Sharp Weyl Law for Signed Counting Function of Positive Interior Transmission Eigenvalues

نویسندگان

  • Evgeny Lakshtanov
  • Boris Vainberg
چکیده

We consider the interior transmission eigenvalue (ITE) problem that arises when scattering by inhomogeneous media is studied. The ITE problem is not self-adjoint. We show that positive ITEs are observable together with plus or minus signs that are defined by the direction of motion of the corresponding eigenvalues of the scattering matrix (as they approach z = 1). We obtain a Weyl type formula for the counting function of positive ITEs, which are taken together with the ascribed signs. The results are applicable to the case when the medium contains an un-penetrable obstacle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on positive interior transmission eigenvalues

This paper contains lower bounds on the counting function of the positive eigenvalues of the interior transmission problem when the latter is elliptic. In particular, these bounds justify the existence of an infinite set of interior transmission eigenvalues and provide asymptotic estimates from above on the counting function for the large values of the wave number. They also lead to certain imp...

متن کامل

Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues

We derive differential inequalities and difference inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian, Rσ(z) := ∑ k (z − λk) σ +. Here {λk} ∞ k=1 are the ordered eigenvalues of the Laplacian on a bounded domain Ω ⊂ Rd, and x+ := max(0, x) denotes the positive part of the quantity x. As corollaries of these inequalities, we derive Weyl-type bounds on λk, on averages such as λ...

متن کامل

. SP ] 2 4 M ay 2 00 7 Differential inequalities for Riesz means and Weyl - type bounds for eigenvalues 1

We derive differential inequalities and difference inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian, Rσ(z) := ∑ k (z − λk) σ +. Here {λk} ∞ k=1 are the ordered eigenvalues of the Laplacian on a bounded domain Ω ⊂ Rd, and x+ := max(0, x) denotes the positive part of the quantity x. As corollaries of these inequalities, we derive Weyl-type bounds on λk, on averages such as λ...

متن کامل

Inside-Outside Duality and the Determination of Electromagnetic Interior Transmission Eigenvalues

We introduce an inside-outside duality approach for the determination of interior transmission eigenvalues of a possibly anisotropic dielectric electromagnetic scattering object using timeharmonic electromagnetic far field data. To this end, we exploit a self-adjoint factorization of the far field operator to link the electromagnetic interior transmission eigenvalues to the maximal or minimal p...

متن کامل

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2015